The feruloyl esterase genes are required for full pathogenicity of the apple tree canker pathogen *Valsa mali*

MING XU, XIAONING GAO*, JILIANG CHEN, ZHIYUAN YIN, HAO FENG AND LILI HUANG*

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China

SUMMARY

Apple Valsa canker, caused by the fungus *Valsa mali*, is one of the most destructive diseases of apple trees in East Asia. Feruloyl esterases (ferulic acid esterases, FAEs), which belong to a sub-class of carboxylic esterases, can cleave ester bonds that crosslink hydroxycinnamic acids and arabinoxylans or certain pectins in plant cell walls. However, a pathogenic role of FAE has not been demonstrated in plant-pathogenic fungi. In this study, the FAE gene family, including one type A, one type B, three type C and two type D FAE genes, was identified in *V. mali*. Five of the seven FAE genes had highly elevated transcript levels in *V. mali*–apple tree bark interactions compared with mycelia grown in axenic culture. Signal peptides of the VmFAEs were confirmed using yeast signal sequence trap assays. To examine whether FAEs are required for the pathogenicity of *V. mali*, seven single- and six double-gene deletion mutants were generated. Compared with the wild-type, three of the seven FAE single-deletion mutants showed significantly reduced pathogenicity and three of the six FAE double-deletion mutants exhibited greater reductions in pathogenicity, suggesting the joint action of FAEs in the *V. mali*–apple tree interaction. Most of the FAE mutants that exhibited a significant reduction in pathogenicity had significantly lower FAE activity than the wild-type fungus. These results indicate that secreted FAEs are required for the full pathogenicity of the phytopathogenic fungus *V. mali*.

Keywords: apple tree Valsa canker, cell wall-degrading enzyme, FAE, pathogenicity, secretion.

INTRODUCTION

Plant cells are surrounded by three-dimensional plant cell walls formed from a tight complex polysaccharide network that consists primarily of cellulose, hemicelluloses, pectin and a small number of structural proteins (Cosgrove, 2005). Plant cell walls are strengthened by ester linkages, which covalently bind hydroxycinnamic acids to polysaccharides (Benoit et al., 2006; Gopalan et al., 2015; Ishii, 1997). Some plant cells are additionally surrounded by a secondary cell wall formed by a thick layer of cellulose associated with lignin. This stable structure of plant cell walls provides effective protection against microorganisms (Dixon, 2013). In parallel, phytopathogens have evolved powerful arsenals to break down plant cell walls. Most plant pathogens secrete a complex mixture of hydrolytic enzymes, which enable the pathogens to penetrate and infect the host (Kubicek et al., 2014). These extracellular hydrolytic enzymes are called cell wall-degrading enzymes (CWDEs) (Guerriero et al., 2015; Kikot et al., 2009; Walton, 1994). CWDEs are essential for phytopathogens that do not have specialized penetration structures (Kikot et al., 2009). In addition, many phytopathogens require CWDEs during the late stages of infection for the killing and degradation of plant tissue to utilize nutrients for growth and reproduction (Kubicek et al., 2014).

Feruloyl esterases (ferulic acid esterases, FAEs) [EC 3.1.1.73] (also known as cinnamic acid hydrolases, cinnamoyl esterases or p-coumaroyl esterases) belong to a subclass of carboxylic esterases, which are hemicellulases [EC 3.1.1] (Topakas et al., 2007). FAEs cleave ester bonds that crosslink hydroxycinnamic acids and arabinoxylans or certain pectins in plant cell walls. Four subclasses, termed types A, B, C and D, have been classified based on their sequence characteristics and substrate utilization (Crepin et al., 2004). FAEs have been well characterized for their potential applications in many industries, including the chemical, food, pharmaceutical, cosmetics, fuel, textile, pulp and paper industries (Pinto, 2015). FAEs are thought to play an important role in the complete degradation of plant cell wall polysaccharides and in loosening the cell wall structure by hydrolysing the ferulate ester groups involved in the crosslinks between hemicellulose and lignin (Gopalan et al., 2015; de Vries & Visser, 1999; Wong, 2006), thereby facilitating the access of depolymerases to the cell wall polymer backbones (Hermoos et al., 2004; Kikot et al., 2009).

Apple Valsa canker, caused by *Valsa mali*, is one of the most destructive diseases of apple trees in East Asia (Vasilyeva & Kim, 2000; Wang et al., 2014). *V. mali* exhibits only weak parasitism because this fungus parasitizes mainly through bark wounds and cracks (Adams et al., 2006; Biggs, 1989; Ke et al., 2013; Kepley & Jacobi, 2000). After the infection of wounded tissue, hyphae develop intra- and intercellularly and colonize bark tissue surrounding the penetration sites, which induces severe tissue maceration and necrosis (Ke et al., 2013). The genome and transcriptome of *V. mali* during the infection of apple bark have been
sequenced. A whole-genome analysis has revealed that the *V. mali* genome encodes a plethora of pathogenicity-related genes involved in plant cell wall degradation and secondary metabolite biosynthesis (Yin et al., 2015). Transcriptome profiling has also suggested that cell wall hydrolases are important for disease establishment (Ke et al., 2014). In our previous study, a transfer DNA (T-DNA) insertion mutant with reduced virulence was identified (Hu et al., 2014; Huang et al., 2014). The insertion was annotated in the FAEB gene (Huang et al., 2014). The objective of this study was to provide insights into the potential functions of FAE during *V. mali* infection.

RESULTS

Sequence identification, phylogenetic analysis and sequence alignment of *V. mali* FAEs

BLAST searches with the four well-characterized types of FAE sequence showed that seven putative FAE genes (VM1G_01793, VM09901, VM04403, VM1G_00022, VM1G_06347, VM1G_06527 and VM1G_00901) were encoded by the genome of *V. mali*. All seven FAE genes were amplified by polymerase chain reaction (PCR) from a cDNA library of *V. mali* and confirmed by sequencing. The conserved domains of the candidate FAE genes were showed in Fig. S1.

To determine the type and to understand the evolutionary relationship of the predicted *V. mali* FAEs, the protein sequences of these predicted proteins and those of certain characterized FAEs and some related CWDEs were aligned using ClustalW, and the alignment result was used to build a neighbour-joining phylogenetic tree (Fig. 1A). The phylogenetic tree indicates that FAEs from *V. mali* can be divided into four subgroups, types A, B, C and D, according to the classification standard of Crepin et al. (2004). The phylogenetic tree shows that one type A, one type B, three type C and two type D FAEs are encoded by the genome of *V. mali* (Fig. 1A). Therefore, the genes VM1G_01793, VM09901, VM04403, VM1G_00022, VM1G_06347, VM1G_06527 and VM1G_00901 were named VmFAEA1, VmFAEB1, VmFAEC1, VmFAEC2, VmFAED1 and VmFAED2, respectively. Notably, fungal lipases (Thermomyces lanuginosus lipase AAC08588 and Neurospora crassa lipase CAC28687) have high sequence identity with the type A FAEs, which has been shown in a previous study (Crepin et al., 2004). VmFAEB1 is closely related to FgFAEB3 (XP_011325310) from Fusarium graminearum. The three VmFAECs are closely related to the FAEcs from *F. graminearum*. The two VmFAEDs have a close evolutionary relationship with FAEs from Diaporthe ampelina and Grosmaninia clavigera.

All five type A FAEs and the two lipase sequences aligned using the ClustalW program have a common motif (GHSLG) (Fig. 1B). The alignment of the type B FAEs revealed a GXSLG motif, where X stands for S, T, D or V (Fig. 1B). The alignment of the type C FAEs showed a GX_S2GG motif, where X stands for C or G and X2 is L or T (Fig. 1B). The alignment of the type D FAEs also revealed a GX_S2GG motif, but X1 stands for F, W or K and X2 is Q, Y or N (Fig. 1B). In contrast with the former findings, both type C and type D FAEs have the ‘GX_S2GG’ rather than the ‘GX_S2GG’ motif (Fig. 1B). The conserved motif of these seven predicted *V. mali* FAEs presumably indicates that they are FAEs.

Five FAE genes are highly up-regulated during *V. mali* infection of apple bark tissue

To examine the transcript level of FAE genes during the interaction of *V. mali* with apple tree bark and in mycelia grown in axenic culture, we sampled infected apple bark tissue at 3 days post-inoculation (dpi) and compared transcript levels with those of mycelia grown in axenic culture for 3 days. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays showed that the FAE genes (VmFAEA1, VmFAEB1, VmFAEC1, VmFAEC2 and VmFAED1) were up-regulated on interaction of *V. mali* with apple tree bark (Fig. 2). VmFAEA1 was the most up-regulated gene with a nearly 15-fold increase in the transcript level. VmFAEB1 was up-regulated nearly six-fold. The two type C FAE genes, VmFAEC1 and VmFAEC2, were up-regulated more than 11- and nine-fold, respectively. The VmFAED1 gene was up-regulated nearly five-fold. Overall, the high induction of FAE genes during infection suggests a potential role in the pathogenicity of *V. mali*.

Valsa mali FAEs possess signal peptides (SPs)**

To verify whether the FAEs of *V. mali* are secreted, amino acid sequences were analysed using the SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/) (Petersen et al., 2011). The results suggest that all the FAEs of *V. mali* contain SPs (Fig. S2, see Supporting Information). To experimentally validate this prediction, the SP-encoding sequences of five *V. mali* FAEs were successfully cloned into the pSUC2 vector (Jacobs et al., 1997). Like the positive control Avr1b, the transformants containing pSUC2-VmAFAE-SP could grow in both CMD-W medium (yeast growth without invertase secretion) and YPRAA medium (growth only when invertase is secreted) (Fig. 3). However, transformants with negative control pSUC2-Mg87 or empty vector pSUC2 could not grow in YPRAA (Fig. 3). These results indicate that *V. mali* FAEs contain SPs. The bioinformatics predictions, together with the experimental verification, suggest that the FAEs of *V. mali* are secreted.

Generation of FAE gene deletion mutants and complementation transfectants

To verify the function of FAEs in *V. mali*, single-deletion mutants of all seven FAE genes were generated (Table 1). The mutants were examined via PCR assays (Fig. S4, see Supporting Information) and Southern blot analysis (Fig. S5, see Supporting Information). When probed with hygromycin B phosphotransferase gene (*Hph*) or neomycin resistance gene (*Neo*) fragments, the
Fig. 1 Phylogenetic tree of ferulic acid esterases (FAEs) and alignment of different types of FAE. A neighbour-joining phylogenetic tree was constructed using MEGA7. Bootstrap values were set to 1000 repetitions. NgFAEA_XP_003172162, Nannizzia gypsea FAEA; TmFAEA_KFX45157, Talaromyces marneffei FAEA; AnFAEA_AAK60631, Aspergillus niger FAEA; AtFAEA_CAA70511, Aspergillus tubingensis FAEA; NcLipase_CAC28687, Neurospora crassa NcFAE lipase; Tllipase_AAC08588, Thermomyces lanuginosus lipase; FgFAEB1_XP_011325796, Fusarium graminearum FAE1B; FgFAEB2_CEF78757, F. graminearum FAE2B; FgFAEB3_XP_011325310, F. graminearum FAE3B; NcFAEB_CAC05587, N. crassa FAE; PfFAEB_AJ291496, Penicillium funiculosum FAE; FgFAEC1_XP_011322847, F. graminearum FAE1C; FgFAEC2_XP_011318013, F. graminearum FAE2C; FgFAEC3_XP_011322804, F. graminearum FAE3C; AaFAEC_EAL88754, Aspergillus fumigatus FAE; TsFAEC_CAD4531, Talaromyces stipitatus FAE; FgFAED1_XP_011325324, F. graminearum FAE1D; NcFAED_OKP02201, N. crassa FAE; PsFAED_OKP02201, Penicillium subrubescens FAE; NcFAED_EAA26992, N. crassa FAE; GcFAE_XP_014179914, Grosmannia clavigera FAE; DaFAE_KK33038, Diaporthe ampelina FAE. (B) Alignment of the different types of FAE. The alignment results show the conserved motifs of the four types of FAE. The sequence alignment was performed using the CLUSTALW program in MEGA7. Red rectangles indicate conserved motifs of the different types of FAE.
wild-type sample showed no hybridization signal. However, a hybridization signal of the expected size was recorded on analysis of the transformants. When hybridized with FAE gene probes generated from the PCR products amplified using the gene-specific primers 5F/6R (Table S1, see Supporting Information), the wild-type sample exhibited the expected bands, but the FAE mutants lacked a hybridization signal (Fig. S5). To examine whether VmAFeEs undergo joint action and redundancy, six types of FAE double-deletion mutant were generated and examined via PCR assays or Southern blot analysis (Figs S4 and S5; Table 1).

For the complementation of single FAE deletion mutants, a complementary construct was generated and transformed into the corresponding mutant. All the complementation transformants were confirmed by PCR assays (Fig. S6, see Supporting Information). In addition, RT-PCRs were also conducted to confirm that the target VmAFeE genes were knocked out in the gene deletion mutants and that the complementation strains contained the corresponding target genes (Fig. S7, see Supporting Information).

Deletion of FAEs does not affect vegetative growth or pycnidium formation

To investigate whether FAEs play a role in the vegetative growth and development of V. mali, the growth rate, colony and hyphal morphology, and pycnidium formation of the FAE deletion mutants and the wild-type fungus were analysed. No obvious differences in colony morphology or growth rate were observed (Fig. 4). FAE deletion mutants can form pycnidia similar to those of the wild-type fungus (Fig. S8A, see Supporting Information). There was also no significant difference between the FAE deletion mutants and wild-type samples with regard to the number of pycnidia per square centimetre (Fig. S8B). These results indicate that FAE does not affect the vegetative growth or pycnidium formation.

FAE genes contribute to V. mali virulence

The elevated transcript levels of FAEs during infection and the secretion of FAEs suggest that FAEs may contribute to V. mali virulence. The results of the infection assays on twigs of Malus × domestica Borkh. cv. Fuji showed that the VmAFeEA1, VmAFeB1 and VmAFeC1 deletion mutants were significantly reduced in pathogenicity (with reductions of 12%, 15% and 14%, respectively) compared with the wild-type (Fig. 5A–C). However, the pathogenicity of VmAFeC2, VmAFeC3, VmAFeD1 and VmAFeD2 deletion mutants was not significantly different from that of the wild-type (Fig. S9A,B,E,F, see Supporting Information). To confirm that the reduced pathogenicity of the mutants was caused by deletion of VmAFeE, each complementary construct was generated and transformed into the corresponding mutant. The reduced...
Pathogenicity was rescued in the complementation strains (Fig. 5A–C). These results suggest that the deletion of these FAE genes gives rise directly to the reduction in pathogenicity.

To determine whether the FAEs function cooperatively, we inoculated twigs of *M. × domestica* Borkh. *cv. Fuji* with the double-deletion mutants. Although no significant differences were found between the *VmFAEB1C1*, *VmFAEB1D1* and *VmFAED1D2* double-deletion mutants and the wild-type (Fig. S9C,D,G), the *VmFAEA1B1*, *VmFAEC1C2* and *VmFAEC1D1* double-deletion mutants exhibited a significant reduction in lesion size (22%, 28% and 23%, respectively) (Fig. 5D–F). This result indicates that the FAEs may act cooperatively during the *V. mali*–apple tree bark interaction.

FAE deletion mutants exhibit significantly lower FAE activity than that observed in the wild-type fungus

To detect FAE activity, the wild-type fungus and mutants were cultured on MS (Murashige and Skoog) medium containing 0.2% (w/v) ethyl ferulate as the sole carbon source. The MS medium containing 0.2% (w/v) ethyl ferulate was opaque. The utilization of ethyl ferulate by the fungal strain generated clear zones. The cleared zones of the *VmFAEA1*, *VmFAEB1* and *VmFAEC1* deletion mutants were significantly smaller than those of the wild-type fungus (Fig. 6), suggesting that the deletion of FAE caused a decrease in FAE activity.

DISCUSSION

The pathogenic role of the CWDEs of phytopathogens has been elucidated by several previous studies (Bravo Ruiz *et al.*, 2016; Feng, 2005; Fu *et al.*, 2013; Van Vu *et al.*, 2012). FAEs are components of hemicellulolytic enzyme systems in microorganisms

Table 1 Wild-type and mutant strains of *Valsa mali* used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-8</td>
<td>Wild-type</td>
</tr>
<tr>
<td>A1-52</td>
<td>VmFAEA1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>A1-60</td>
<td>VmFAEA1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>B1-5</td>
<td>VmFAEB1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>B1-23</td>
<td>VmFAEB1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C1-71</td>
<td>VmFAEC1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C1-116</td>
<td>VmFAEC1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C2-6</td>
<td>VmFAEC2 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C2-57</td>
<td>VmFAEC2 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C3-24</td>
<td>VmFAEC3 deletion mutant of 03-8</td>
</tr>
<tr>
<td>C3-55</td>
<td>VmFAEC3 deletion mutant of 03-8</td>
</tr>
<tr>
<td>D1-35</td>
<td>VmFAED1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>D1-69</td>
<td>VmFAED1 deletion mutant of 03-8</td>
</tr>
<tr>
<td>D2-14</td>
<td>VmFAED2 deletion mutant of 03-8</td>
</tr>
<tr>
<td>D2-24</td>
<td>VmFAED2 deletion mutant of 03-8</td>
</tr>
<tr>
<td>A1B1-3</td>
<td>VmFAEB1 deletion mutant of A1-52</td>
</tr>
<tr>
<td>A1B1-41</td>
<td>VmFAEB1 deletion mutant of A1-52</td>
</tr>
<tr>
<td>B1C1-15</td>
<td>VmFAEC1 deletion mutant of B1-5</td>
</tr>
<tr>
<td>B1C1-18</td>
<td>VmFAEC1 deletion mutant of B1-5</td>
</tr>
<tr>
<td>C1C2-10</td>
<td>VmFAEC2 deletion mutant of C1-71</td>
</tr>
<tr>
<td>C1C2-35</td>
<td>VmFAEC2 deletion mutant of C1-71</td>
</tr>
<tr>
<td>B1D1-25</td>
<td>VmFAED1 deletion mutant of B1-5</td>
</tr>
<tr>
<td>B1D1-34</td>
<td>VmFAED1 deletion mutant of B1-5</td>
</tr>
<tr>
<td>C1D1-17</td>
<td>VmFAED1 deletion mutant of C1-71</td>
</tr>
<tr>
<td>C1D1-62</td>
<td>VmFAED1 deletion mutant of C1-71</td>
</tr>
<tr>
<td>D1D2-45</td>
<td>VmFAED2 deletion mutant of D1-35</td>
</tr>
<tr>
<td>D1D2-86</td>
<td>VmFAED2 deletion mutant of D1-35</td>
</tr>
<tr>
<td>A1C</td>
<td>VmFAEA1 complementation transformant of A1-52</td>
</tr>
<tr>
<td>B1C</td>
<td>VmFAEB1 complementation transformant of B1-5</td>
</tr>
<tr>
<td>C1C</td>
<td>VmFAEC1 complementation transformant of C1-71</td>
</tr>
<tr>
<td>C2C</td>
<td>VmFAEC2 complementation transformant of C2-57</td>
</tr>
<tr>
<td>D1C</td>
<td>VmFAED1 complementation transformant of D1-35</td>
</tr>
</tbody>
</table>

Fig. 4 Colony morphology and colour of wild-type and ferulic acid esterase (FAE) gene deletion mutants. The wild-type and FAE gene deletion mutants were cultured on potato dextrose agar (PDA) at 25°C in the dark. Photographs were taken at 2 days post-culture.
FAEs function at the ester bond between hydroxycinnamic acids and arabinoxylans or certain pectins present in plant cell walls, leading to enhanced accessibility for enzymatic attack on the cell wall polymer backbones. Since the release of ferulic acid from wheat bran involving FAEs was first detected in cultures of *Streptomyces olivochromogenes* (Mackenzie et al., 1987), many FAEs have been identified, purified and partially characterized from fungi or bacteria (Borneman et al., 1992; Faulds & Williamson, 1994; Topakas et al., 2007; Wong et al., 2011). Although microbial FAEs have been widely used for numerous purposes, the roles of FAEs in pathogenesis remain largely unknown. In this study, we have shown that the secreted FAEs are required for the full virulence of *V. mali*.

In a previous study, three type B, three type C and one type D FAE gene were identified in *F. graminearum*, and the FAE genes showed host-specific gene expression (Balcerzak et al., 2012). In this study, we identified seven FAE genes in *V. mali*, including one type A, one type B, three type C and two type D FAE genes. Compared with *F. graminearum*, which infects wheat, barley and maize, *V. mali* specifically infects apple trees. The difference in the type and number of FAEs probably indicates the diversity of the infection process amongst the different plant-pathogenic fungi.
rum (Balcerzak revealed that the pectinases of
previously cytochemical and gene functional studies have
In this study, we demonstrated the pathogenic role of the
mote the development of the apple tree
provided by the breakdown of the apple tree bark cell wall pro-
network in apple tree bark. Furthermore, material and nutrition
synergistic effects of FAEs, pectinases and other CWDEs may con-
gene family in the
et al., 2013; Yin et al., 2015). During the interaction of V. mali with apple
tree bark, severe tissue maceration and necrosis are caused, sug-
jecting the action of CWDEs (Ke et al., 2013; Yin et al., 2015).
Previously, cytochemical and gene functional studies have
revealed that the pectinases of V. mali play an important role in
colonization and pathogenicity (Ke et al., 2013; Yin et al., 2015).
In this study, we demonstrated the pathogenic role of the FAE
gene family in the V. mali–apple tree interaction. Aided by the
synergistic effects of FAEs, pectinases and other CWDEs may con-
tribute to the dissociation of crosslinks in the polysaccharide
network in apple tree bark. Furthermore, material and nutrition
provided by the breakdown of the apple tree bark cell wall pro-
mote the development of the apple tree Valsa canker.

In plant-pathogenic fungi, redundancy is a CWDE property
(Walton, 1994) that impedes the deletion of the genes of interest.
The F. graminearum genome contains seven FAE genes, including
three type B, three type C and one type D FAE gene. FAEB1, FAE1, and double-gene-inactivated mutants do not exhibit a
statistically significant reduction in virulence; therefore, FAEB1 and FAE1 are not essential for the pathogenicity of F. graminea-
rum (Balcerzak et al., 2012). In Magnaporthe grisea, MgFAEA (M. grisea FAE1) shows three hypothetical proteins with a high
degree of homology in the genome (Zheng et al., 2009). When
one of these genes is lost, the function may be complemented by
the other FAE genes (Zheng et al., 2009). Similarly, the different
FAEs from Aspergillus niger have compensatory functions in the
degradation of cell wall polysaccharides (de Vries & Visser, 1999).

In V. mali, the number of different types of FAEs is less than
three, which facilitated our work in deleting the FAE genes. In this
study, we generated single-deletion mutants of all seven of the
FAE genes. The pathogenicity of single-deletion mutants of
VmFAEA1, VmFAEB1 and VmFAEC1 showed a significant reduc-
tion compared with the wild-type strain. To verify whether there is
joint action and redundancy of VmFAEs, we generated six double-
gene-deletion mutants based on classification and expression
pattern. Because only one type A and one type B FAE were identi-
fied in V. mali, we generated the VmFAEA1B1 double-deletion
mutants to verify whether type A and type B FAEs operate either
additively or synergistically. Compared with the wild-type strain,
deletion of either VmFAEA1 or VmFAEB1 resulted in a significant
reduction in pathogenicity. Double-deletion mutants of
VmFAEA1B1 showed a greater reduction. These results suggest that
VmFAEA1 and VmFAEB1 have different substrates, but, alter-
natively, they may act additively by attacking the same substrate,
with the two genes contributing to increase the level of enzyme
present. Three type C FAE genes were identified in V. mali.
However, only VmFAEC1 and VmFAEC2 were up-regulated during the
V. mali–apple tree bark interaction. Moreover, VmFAEC1 and
VmFAEC2 have a close evolutionary relationship. Although the
pathogenicity of VmFAEC1 deletion mutants showed a significant
reduction, VmFAEC2 deletion mutants did not reduce pathogenic-
ity. Further, the pathogenicity of VmFAEC1C2 double-deletion
mutants also showed a greater reduction compared with single-
deletion mutants of VmFAEC1 or VmFAEC2. These results suggest
the redundancy of type C FAEs in V. mali. Another type C FAE
may partly complement the function of the deleted VmFAEC1 and
VmFAEC2 genes. A similar result has been found previously with
regard to secreted exo- and endo-polygalacturonases, which func-
tion cooperatively to provide the full virulence of Fusarium o xo-
sorum (Bravo Ruiz et al., 2016). Although VmFAEA1B1 and
VmFAEC1C2 double-deletion mutants showed significant reduc-
tion in pathogenicity, double-deletion mutants of VmFAEB1C1, VmFAEB1D1 and VmFAED1D2 did not show significant reduction.
This may be caused by the induced expression of other VmFAEs
which complement the function of the deleted genes in these
VmFAE double-deletion mutants, suggesting the redundancy of
FAE genes in V. mali. In another study of polygalacturonase (PG),
the expression levels of the other PG genes in the PG family were
obviously affected when both Vmpg7 and Vmpg8 were knocked
out, especially three genes that were significantly up-regulated
(Xu et al., 2016). These data reveal the joint action and re-
dundancy of the FAE gene in V. mali.
The decrease in the capacity of the FAE gene deletion mutants to utilize ethyl ferulate suggests a reduction in the levels of secreted FAEs, which accounts for the decrease in pathogenicity. However, the VmFAED1 deletion mutant did not show significant reduction in pathogenicity, but reduced overall FAE activity. This is consistent with the results obtained with the F. graminearum xylanase FGSG_03624, which contributes significantly to total xylanase activity, but does not contribute to pathogenicity (Sella et al., 2013). VmFAEC1D1 double-deletion mutants exhibited reduced pathogenicity, but not reduced overall FAE activity, suggesting that the loss of VmFAEC1 and VmFAED1 did not affect the degradation of ethyl ferulate in MSEA medium (MS-ethyl ferulate-agar), but substrates of the apple tree bark cell wall. These results may be explained by the complexity of transcriptional regulation of FAE genes. In F. graminearum, the expression of FAE1 is subject to carbon catabolite repression and is regulated by the xylanolytic transcriptional activator XlnR (Balcerzak et al., 2012). However, when exposed to glucose, xylose and galactose, FgFEAC1 showed a low level of constitutive expression which is opposite to FgFAEB1. Moreover, when cultured in different sugar and aromatic compounds or exposed to maize and wheat hosts, the expression patterns of FgFAEB2, FgFAEB3 and FgFAED1 were different (Balcerzak et al., 2012). Our results suggest that the regulation of the FAE gene family is also complex in V. mali. This needs to be explored further.

Our work highlights that the FAE genes are required for full pathogenicity of the apple tree canker pathogen V. mali. Although FAE genes are redundant, our systematic generation of FAE gene deletion mutants revealed that different FAE genes function cooperatively with regard to pathogenicity in V. mali. Pectinases have been demonstrated to be involved in the virulence of V. mali (Ke et al., 2013; Xu et al., 2016; Yin et al., 2015). FAE may work in conjunction with pectinases to degrade pectin by the cleavage of ester bonds that crosslink hydroxycinnamic acids and pectins in apple tree bark to facilitate infection and development of V. mali in apple tree bark.

EXPERIMENTAL PROCEDURES

Strains and growth conditions

The V. mali wild-type strain 03-8 was obtained from the Laboratory of Integrated Management of Plant Diseases at the College of Plant Protection, Northwest A&F University, China, and maintained on potato dextrose agar (PDA) (200 g of potato, 20 g of dextrose, 15 g of agar in 1 L) at 4°C. Cultures of 03-8 and the gene deletion mutants were grown on PDA (200 g of potato, 20 g of dextrose, 15 g of agar in 1 L) at 25°C in the dark. Yeast strains, YTK12 and XK1-25, were cultured on YEPD (10 g of yeast extract, 20 g of peptone, 20 g of dextrose, and 20 g of agar in 1 L) at 30°C. For the generation of the complementation vectors, XK1-25 was cultured on YEPD (3 g of yeast extract, 10 g of peptone, 20 g of dextrose in 1 L), and transformants were cultured on SD-Trp agar medium (6.7 g of yeast nitrogen base without amino acids, 20 g of dextrose, 20 g of agar, 0.74 g of Trp DO Supplement in 1 L), as described previously (Zhou et al., 2011).

Identification of FAE genes in V. mali

To identify candidate FAE genes in the V. mali genome, BLAST searches with well-characterized FAE genes (A. niger FAEA, AF361950; A. tubigenesis FAEA, Y09331; N. crassa FAEB, A1293029; Penicillium funiculosum FAEB, A1291496; Talaromyces stipitatus FAEC, AJ505939; F. graminearum FAEC, XM_011324545; Cellulibrio japonicus xynD, X58956; F. graminearum FAED, XM_011327022) were conducted. The conserved domains of the candidate FAE genes were ascertained using the National Center for Biotechnology Information (NCBI) conserved domain database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marchler-Bauer et al., 2015). Primer pairs (Table S1) for the cloning of all the candidate FAE genes were synthesized by the Shenggong Company (Shanghai, China). All the genes were amplified using FastPfu DNA polymerase (Transgene, Beijing, China) from a cDNA library of V. mali and cloned to T-Vector pMD19 Simple (Takara, Dalian, China). The clones identified by colony PCR were confirmed by sequencing on a 37330xl (Applied Biosystems, Foster City, California, USA).

Sequence alignment and phylogenetic analysis

We performed sequence alignments of the FAEs of V. mali other published FAEs and certain related CWDEs with CLUSTALW using the MEGA7 program with all the parameters set at the default values. The neighbour-joining tree was constructed using MEGA7 with bootstrap replicates set to 1000 (Kumar et al., 2016). The tree was finally visualized using the Interactive Tree Of Life (iTOL) software (http://itol.embl.de/) (Letunic & Bork, 2016). Multiple sequence alignments of the different types of FAEs were performed with CLUSTALW using MEGA7 as described above.

qRT-PCR analysis

Vegetative hyphae were cultured on YEPD (10 g of yeast extract, 20 g of peptone, 20 g of dextrose in 1 L), and the junction of healthy and infected apple bark tissue inoculated with V. mali wild-type strain was sampled at 3 dpi. The softened, water-soaked, reddish-brown lesion caused by V. mali can be easily identified at this time point. Total RNA was extracted using the Quick RNA Isolation Kit (Huayuyang, Beijing, China), and first-strand cDNA was synthesized using a first-strand cDNA synthesis kit (Promega, Madison, Wisconsin, USA) according to the manufacturer’s instructions. The primers used for qRT-PCR analysis are listed in Table S1. A 2 × RealStar Power SYBR Mixture (GenStar, Beijing, China) was used for qRT-PCR. The V. mali housekeeping gene glucose-6-phosphate dehydrogenase (G6PDH) was used as the reference gene (Yin et al., 2013). Relative changes in the transcription level of each gene were calculated using the 2−ΔΔCT method (Livak & Schmittgen, 2001). The transcriptional analyses of the V. mali FAE genes were independently repeated three times, and each qRT-PCR analysis contained three technical replicates.

Prediction and verification of the SPs of the VmFAEs

SPs were predicted using SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/) (Petersen et al., 2011). To confirm the validity of the predictions, the signal sequence trap method was used (Jacobs et al., 1997). YTK12 and transformants were cultured on CMD-W and YPRAA media, as
described previously (Gu et al., 2011). The coding sequences of the SP of Avr1b and the first 25 amino acids of Mg87 were used as positive and negative controls, respectively (Gu et al., 2011). All the coding sequences of the predicted SPs and the first 25 amino acids of Mg87 were cloned into pSUC2T7M13ORI (pSUC2) using EcoRI and XhoI, and the fused plasmids were transformed into Escherichia coli JM1109. All the transformants were tested by PCR and sequenced. The correct plasmids were introduced into the yeast strain YTK12. Transformants were grown on CMD-W and YPRAA media at 30°C for 3 days.

Construction of the gene deletion cassette

The strategy used for the construction of the gene deletion cassettes was derived from the double-joint PCR method (Yu et al., 2004). Figure S3 (see Supporting Information shows the strategy of gene deletion used in this study. To generate the single FAE gene deletion mutants, VmFAEAg1, VmFAEC2 and VmFAEC3 were replaced by NEO, and VmFAEBl, VmFAECl, VmFAED1 and VmFAED2 were replaced by HPH. Upstream and downstream fragments of the V. mali FAE genes were amplified from 03–B DNA using two sets of gene-specific primer pairs, 1F/2R and 3F/4R (Table S1). Special 2R and 3F chimeric primers for every gene contained the homologous joints to HPH or NEO. The HPH fragment was amplified from the plasmid pHG2RPH2-GFP-GUS using the primers HPH-F and HPH-R, and the NEO fragment was amplified from the plasmid pFL2 using the primers NEO-F and NEO-R. The upstream, downstream and HPH (or NEO) fragments were fused by double-joint PCR (Yu et al., 2004). A nested PCR amplification using the primers CF/CR was necessary. All the gene knock-out cassettes were confirmed by sequencing.

Deletion of FAE genes

Protoplast preparation and polyethylene glycol (PEG)-mediated transformation were conducted as described previously (Gao et al., 2011). Regenerated mycelia were mixed with 10 mL of molten bottom agar containing 60 μg/mL hygromycin B (Roche, Mannheim, Germany) or 100 μg/mL gentamicin (MP, Solon, Ohio, USA). After 10 h of cultivation at 25°C in the dark, top agar containing 100 μg/mL hygromycin B or 150 μg/mL gentamicin was overlaid. After 3–5 days, transformants were picked and inoculated onto PDA containing 100 μg/mL hygromycin B or 150 μg/mL gentamicin. Genomic DNA was isolated as described previously (Villalba et al., 2008). PCR detection of the FAE gene deletion mutants was carried out by amplification with four primer pairs. The primer pairs 5F/6R and H852/H850 (G852/G850) were used to verify the deletion of V. mali FAE and insertion of HPH or NEO, respectively. The primer pairs 7F/H855R (or G855R) and H856F (or G856F)/VmFAE-8R were used to verify targeted homologous recombination in both upstream and downstream flanks of the gene of interest. For Southern hybridization, 20 μg of genomic DNA was digested by selected restriction endonucleases (Thermo, Waltham, Massachusetts, USA) and subjected to 0.8% agarose gel electrophoresis. DNA was transferred to the positive CHGD nylon transfer membrane (Amersham Biosciences, Piscataway, New Jersey, USA). The synthesis of probes and hybridization were conducted following the Instruction Manual of the DIG High Prime DNA Labeling and Detection Starter Kit II (Roche).

To generate the FAE gene double-deletion mutants, the second FAE gene was deleted in the single FAE deletion mutant utilizing selection on a second antibiotic resistance gene. All the FAE double-deletion mutants were also confirmed by PCR and Southern blot analysis.

Generation of complementation strains

For complementation assays, the entire V. mali FAE coding sequence and predicted promoter sequence were amplified from genomic DNA using the primer pair CM-F/R (Table S1), and cloned into pFL2 (VmFAE genes replaced by HPH or pDL2 (VmFAE genes replaced by NEO) using the yeast gap repair approach, as described previously (Zhou et al., 2011). Fusion constructs were confirmed by sequencing, and plasmids were transformed into the corresponding deletion mutant via PEG-mediated transformation (Gao et al., 2011). The transformants were confirmed by PCR with the primer pair CM-F/R.

RT-PCR of VmFAE in wild-type, FAE gene deletion mutants and complementation mutants

RNA extraction and first-strand cDNA synthesis of cultured mycelium of wild-type, FAE gene deletion mutants and complementation mutants were conducted as described previously. Primers used for qRT-PCR were employed to detect FAE genes from cDNA of wild-type, FAE gene deletion mutants and complementation mutants. The housekeeping gene G6PDH was used as a control.

Vegetative growth and pycnidia formation

Mycelium plugs (d = 5 mm) from the edge of a growing colony were used to inoculate new PDA plates, which were cultivated at 25°C in the dark for 48 h. Colony shape and colour were observed. Furthermore, the colony diameters were measured. For pycnidia formation, mycelium plugs (d = 5 mm) were inoculated onto detached twigs of M. × domestica Borkh. cv. Fuji as described previously (Wei et al., 2010). The inoculated twigs were cultured at 25°C with a 16-h light and 8-h dark cycle. Pycnidia were counted at 30 dpi. Each experiment was repeated three times and included three replicates. Data were analysed by Tukey’s multiple comparison test with SPSS 23.0 (SPSS Inc., Chicago, Illinois, USA) and P < 0.05 was considered to be a significant difference.

Infection assays

For the infection assays, annual apple twigs of M. × domestica Borkh. cv. ‘Fuji’ with similar growth tendency and thickness from the same test field were collected and inoculated as described previously with a slight modification (Wei et al., 2010). Detached twigs were cut into segments of 30 cm in length and washed with tap water. For surface sterilization, the twigs were immersed in sterilized distilled water with 0.6% (w/v) sodium hypochlorite for 10 min. The twigs were washed with sterilized distilled water three times and sealed with paraffin at both ends. Then, three evenly distributed wounds were made with a cork borer (diameter, 5 mm) in the upper, middle and lower regions of the twig segments. Mycelium plugs (d = 5 mm) from the edge of a growing colony on SYA medium (5 g of sucrose, 0.5 g of yeast extract, 15 g of agar in 1 L) were inoculated onto wounds. Each group of infection assays included three treated twigs. The wild-type strain, the FAE gene deletion mutant and the complementation strain (or another FAE gene deletion mutant) were rotationally
inoculated to the upper, middle and lower wounds in the three different apple twigs. SYA medium plugs (d = 5 mm) were used as control. The inoculated twigs were placed in trays, and the trays were covered with parafilm to retain humidity. Then, the inoculated twigs were cultured at 25°C in the dark. The maximum lesion length was measured at 5 dpi. The infection assays were independently repeated three times with three twigs per experiment. The pathogenicity data were analysed using Fisher’s least-significant difference (LSD) test with SPSS 23.0 (SPSS Inc.). P < 0.05 was considered to be a significant difference.

FAE activity assays

To detect FAE activity, MS medium (PhytoTechnology Laboratories, Shawnee Mission, Kans, USA) containing 0.2% (w/v) ethyl ferulate (Sigma, St. Louis, Missouri, USA), which acted as the sole carbon source, was used to inoculate MSEFA and cultured at 25°C in the dark for 3 days. Afterwards, the diameter of the cleared areas was measured. Experiments were repeated three times and included three replicates. Data were analysed by Tukey’s multiple comparison test with SPSS 23.0 (SPSS Inc.). P < 0.05 was considered to be a significant difference.

ACKNOWLEDGEMENTS

We thank Professor Ralf T. Voegele at University of Hohenheim for careful reading of the manuscript. We thank Professor Fengming Song at Zhejiang University for providing the pHIG2RHPH2-GFP-GUS plasmid. We also thank Professor Jin-Rong Xu at Northwest A&F University and Zhejiang University for providing the pHIG2RHPH2-GFP-GUS plasmid. This work was supported by the National Natural Science Foundation of China (313301606).

CONFLICTS OF INTEREST

The authors declare that no competing interests exist.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Fig. S1 Conserved domains of the candidate ferulic acid esterase (FAE) genes.

Fig. S2 Prediction of the signal peptides of the Valsa mali ferulic acid esterases (VmAFAEs) by SignalP 4.1.

Fig. S3 Diagram of strategy of gene deletion used in this study.

Fig. S4 Polymerase chain reaction (PCR) detection of the Valsa mali ferulic acid esterase (VmAFAE) deletion mutants. Four primer pairs were used to detect the mutants. Four lines (from left to right) in the agarose gel for each mutant were loaded DNA products amplified by the primer pairs 5F/6R (detection of the target gene), H852/H850 (G852/G850) (detection of the resistance gene), 7F/H855R (G855R) (detection of the upstream homologous recombination) and H856F (G856F)/8R (detection of the downstream homologous recombination), respectively. In (E), (G) and (M), the wild-type strain 03-8 and pFL2 plasmid were used as positive control for detection of the target gene and resistance gene, respectively; sterile double-distilled H2O (ddH2O) was used as a negative control.

Fig. S5 Construction of the ferulic acid esterase (FAE) gene replacement cassettes and Southern blot analysis of the FAE deletion mutants of Valsa mali. (A) Deletion of VmAFAE1; (B) deletion of VmAFAE1 and double deletion of VmAFAE1 based on A1–52; (C) deletion of VmAFAEC1; (D) deletion of VmAFAE2; (E) deletion of VmAFAE1; (F) double deletion of VmAFAE1 based on B1–5; (G) double deletion of VmAFAE2 based on C1–71; (H) double deletion of VmAFAEd1 based on B1–5 and C1–71.

Fig. S6 Polymerase chain reaction (PCR) detection of complementation strains. VmAFAE-CM-F/R were used to detect the complementation fragments from the genomic DNA of complementation strains.

Fig. S7 Reverse transcription-polymerase chain reaction (RT-PCR) detection of Valsa mali ferulic acid esterases (VmAFAEs) from wild-type, VmAFAE gene deletion mutants and complementation strains. The housekeeping gene glucose-6-phosphate dehydrogenase (G6PDH) was used as control.

Fig. S8 Pfynidation by wild-type and ferulic acid esterase (FAE) gene deletion mutants. Photographs were taken at 30 days post-inoculation (dpi). (A) Pfynidation on apple twigs by wild-type and FAE gene deletion mutants. The black points on the apple twigs are the pycnidia of Valsa mali. (B) Number of pycnidia per square centimetre on apple twigs. Mean and standard deviation were calculated from three independent experiments with three replicates per experiment. Bars represent the standard deviation.

Fig. S9 Pathogenicity measurement of additional Valsa mali ferulic acid esterase (VmAFAE) deletion mutants. Wild-type, FAE gene deletion mutants and complementation strains were inoculated onto twigs of Malus × domestica Borkh. cv. Fuji. SYA (sucrose–yeast extract–agar) medium plugs (d = 5 mm) were used as control (CK). Photographs were taken at 5 days post-inoculation (dpi). Each experiment was repeated independently three times, and each experiment included three replicates. Bars represent the standard deviation.

Table S1 Polymerase chain reaction primers used in this study.